skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A multiscale modeling technique for bridging molecular dynamics with finite element method

Journal Article · · Journal of Computational Physics

In computational mechanics, molecular dynamics (MD) and finite element (FE) analysis are well developed and most popular on nanoscale and macroscale analysis, respectively. MD can very well simulate the atomistic behavior, but cannot simulate macroscale length and time due to computational limits. FE can very well simulate continuum mechanics (CM) problems, but has the limitation of the lack of atomistic level degrees of freedom. Multiscale modeling is an expedient methodology with a potential to connect different levels of modeling such as quantum mechanics, molecular dynamics, and continuum mechanics. This study proposes a new multiscale modeling technique to couple MD with FE. The proposed method relies on weighted average momentum principle. A wave propagation example has been used to illustrate the challenges in coupling MD with FE and to verify the proposed technique. Furthermore, 2-Dimensional problem has also been used to demonstrate how this method would translate into real world applications. -- Highlights: •A weighted averaging momentum method is introduced for bridging molecular dynamics (MD) with finite element (FE) method. •The proposed method shows excellent coupling results in 1-D and 2-D examples. •The proposed method successfully reduces the spurious wave reflection at the border of MD and FE regions. •Big advantages of the proposed method are simplicity and inexpensive computational cost of multiscale analysis.

OSTI ID:
22230820
Journal Information:
Journal of Computational Physics, Vol. 253; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9991
Country of Publication:
United States
Language:
English