Title: Computing the partition function, ensemble averages, and density of states for lattice spin systems by sampling the mean

An algorithm to approximately calculate the partition function (and subsequently ensemble averages) and density of states of lattice spin systems through non-Monte-Carlo random sampling is developed. This algorithm (called the sampling-the-mean algorithm) can be applied to models where the up or down spins at lattice nodes interact to change the spin states of other lattice nodes, especially non-Ising-like models with long-range interactions such as the biological model considered here. Because it is based on the Central Limit Theorem of probability, the sampling-the-mean algorithm also gives estimates of the error in the partition function, ensemble averages, and density of states. Easily implemented parallelization strategies and error minimizing sampling strategies are discussed. The sampling-the-mean method works especially well for relatively small systems, systems with a density of energy states that contains sharp spikes or oscillations, or systems with little a priori knowledge of the density of states.

Journal Name: Journal of Computational Physics; Journal Volume: 250; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)

Country of Publication:

United States

Language:

English

Subject:

97 MATHEMATICAL METHODS AND COMPUTING; ALGORITHMS; APPROXIMATIONS; BIOLOGICAL MODELS; DENSITY; ERRORS; INTERACTION RANGE; MONTE CARLO METHOD; OSCILLATIONS; PARTITION FUNCTIONS; PROBABILITY; RANDOMNESS; SAMPLING; SPIN