skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Turbulence and transport suppression scaling with flow shear on the Large Plasma Device

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4804637· OSTI ID:22228072
; ; ; ; ; ;  [1]
  1. Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

Continuous control over azimuthal flow and shear in the edge of the Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Instr. 62, 2875 (1991)] has been achieved using a biasable limiter. This flow control has allowed a careful study of the effect of flow shear on pressure-gradient-driven turbulence and particle transport in LAPD. The combination of externally controllable shear in a turbulent plasma along with the detailed spatial diagnostic capabilities on LAPD makes the experiment a useful testbed for validation of shear suppression models. Motivated by these models, power-law fits are made to the density and radial velocity fluctuation amplitudes, particle flux, density-potential crossphase, and radial correlation length. The data show a break in the trend of these quantities when the shearing rate (γ{sub s}=∂V{sub θ}/∂r) is comparable to the turbulent decorrelation rate (1/τ{sub ac}). No one model captures the trends in the all turbulent quantities for all values of the shearing rate, but some models successfully match the trend in either the weak (γ{sub s}τ{sub ac}<1) or strong (γ{sub s}τ{sub ac}>1) shear limits.

OSTI ID:
22228072
Journal Information:
Physics of Plasmas, Vol. 20, Issue 5; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English