skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Collisional particle-in-cell modeling for energy transport accompanied by atomic processes in dense plasmas

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4812701· OSTI ID:22227957
;  [1]; ;  [2];  [3]
  1. Center for Energy Research, University of California, San Diego, California 92093 (United States)
  2. Department of Physics, University of Nevada, Reno, Nevada 89557 (United States)
  3. General Atomics, San Diego, California 92121 (United States)

Fully relativistic collisional Particle-in-Cell (PIC) code, PICLS, has been developed to study extreme energy density conditions produced in intense laser-solid interaction. Recent extensions to PICLS, such as the implementation of dynamic ionization, binary collisions in a partially ionized plasma, and radiative losses, enhance the efficacy of simulating intense laser plasma interaction and subsequent energy transport in resistive media. Different ionization models are introduced and benchmarked against each other to check the suitability of the model. The atomic physics models are critical to determine the energy deposition and transport in dense plasmas, especially when they consist of high Z (atomic number) materials. Finally we demonstrate the electron transport simulations to show the importance of target material on fast electron dynamics.

OSTI ID:
22227957
Journal Information:
Physics of Plasmas, Vol. 20, Issue 7; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English