skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Competing effective interactions of Dirac electrons in the Spin–Fermion system

Journal Article · · Annals of Physics (New York)
 [1];  [2]
  1. Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ, 21941-972 (Brazil)
  2. Departamento de Ciências Naturais, Universidade Federal de São João del Rei, 36301-000 São João del Rei, MG (Brazil)

Recently discovered advanced materials, such as heavy fermions, frequently exhibit a rich phase diagram suggesting the presence of different competing interactions. A unified description of the origin of these multiple interactions, albeit very important for the comprehension of such materials is, in general not available. It would be therefore very useful to have a simple model where the common source of different interactions could be possibly traced back. In this work we consider a system consisting in a set of localized spins on a square lattice with antiferromagnetic nearest neighbors interactions and itinerant electrons, which are assumed to be Dirac-like and interact with the localized spins through a Kondo magnetic interaction. This system is conveniently described by the Spin–Fermion model, which we use in order to determine the effective interactions among the itinerant electrons. By integrating out the localized degrees of freedom we obtain a set of different interactions, which includes: a BCS-like superconducting term, a Nambu–Jona-Lasinio-like, excitonic term and a spin–spin magnetic term. The resulting phase diagram is investigated by evaluation of the mean-field free-energy as a function of the relevant order parameters. This shows the competition of the above interactions, depending on the temperature, chemical potential and coupling constants. -- Highlights: •Antiferromagnetic Heisenberg–Kondo lattice model with itinerant Dirac fermions. •Integrating out the spins generates competing interactions: BCS-like, excitonic and magnetic. •Novel mechanism of superconductivity from magnetic interactions between the spins and electrons. •Dome-shaped dependence of the temperature on the chemical potential in agreement with pnictides.

OSTI ID:
22224276
Journal Information:
Annals of Physics (New York), Vol. 340, Issue 1; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-4916
Country of Publication:
United States
Language:
English