skip to main content

SciTech ConnectSciTech Connect

Title: Monitoring internal organ motion with continuous wave radar in CT

Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radarmore » system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the measurements of the test persons, there is a very good correlation (ρ= 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements.Conclusions: A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.« less
 [1] ;  [2] ; ;  [3] ;  [4]
  1. Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)
  2. Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
  3. Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)
  4. Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 40; Journal Issue: 9; Other Information: (c) 2013 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States