skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum Bohm correction to polarization spectrum of graphene

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4826220· OSTI ID:22218507
 [1]
  1. Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 51745-406 Tabriz, Iran and International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum (Germany)

In this paper, by using a quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, we present the corrected plasmon dispersion relation for graphene which includes a k{sup 4} quantum term arising from the collective electron density wave interference effects. This correction may well describe the shortcoming of the previous results based on the classical hydrodynamics and confirms that the quantum hydrodynamic model may be as effective as the random phase approximation in successful description of the collective density excitations in quantum plasmas. It is clearly observed that the quantum correction due to the collective interaction of electron waves gives rise to significant contribution in the dispersion behavior of the collective plasmon density waves in a wide range of wavelength, as a fundamental property of the monolayer atom-thick graphene. It is revealed that the plasmon density-perturbation linear phase-speed in graphene possesses some universal minimum characteristic value, in the absence of an external magnetic field. It is further remarked that such correction also has important effect on the dielectric function, hence on the impurity screening, in graphene.

OSTI ID:
22218507
Journal Information:
Physics of Plasmas, Vol. 20, Issue 10; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English