skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low temperature synthesis of nanocrystalline magnesium aluminate with high surface area by surfactant assisted precipitation method: Effect of preparation conditions

Journal Article · · Materials Research Bulletin
 [1];  [1];  [1];  [2];  [3]
  1. Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of)
  2. Shiraz Petrochemical Co., Shiraz (Iran, Islamic Republic of)
  3. Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)

Highlights: ► MgAl{sub 2}O{sub 4} showed a high surface area and nanocrystalline structure. ► Addition of polymeric surfactant affected the structural properties of MgAl{sub 2}O{sub 4}. ► MgAl{sub 2}O{sub 4} prepared with surfactant showed a hollow cylindrical shape. -- Abstract: A surfactant assisted co-precipitation method was employed for the low temperature synthesis of magnesium aluminate spinel with nanocrystalline size and high specific surface area. Pluronic P123 triblock copolymer and ammonia solution were used as surfactant and precipitation agent, respectively. The prepared samples were characterized by thermal gravimetric and differential thermal gravimetric analyses (TG/DTG), X-ray diffraction (XRD), N{sub 2} adsorption (BET) and transmission electron microscopy (TEM) techniques. The effects of several process parameters such as refluxing temperature, refluxing time, pH, P123 to metals mole ratio (P123/metals) and calcination temperature on the structural properties of the samples were investigated. The obtained results showed that, among the process parameters pH and refluxing temperature have a significant effect on the structural properties of samples. The results revealed that increase in pH from 9.5 to 11 and refluxing temperature from 40 °C to 80 °C increased the specific surface area of prepared samples in the range of 157–188 m{sup 2} g{sup −1} and 162–184 m{sup 2} g{sup −1}, respectively. The XRD analysis showed the single-phase MgAl{sub 2}O{sub 4} was formed at 700 °C.

OSTI ID:
22215705
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 9; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English