skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Accelerator shield design of KIPT neutron source facility

Abstract

Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlomore » analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)« less

Authors:
;  [1]
  1. Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)
Publication Date:
Research Org.:
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States)
OSTI Identifier:
22212735
Resource Type:
Conference
Resource Relation:
Conference: M and C 2013: 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Sun Valley, ID (United States), 5-9 May 2013; Other Information: Country of input: France; 9 refs.; Related Information: In: Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013| 3016 p.
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; 97 MATHEMATICAL METHODS AND COMPUTING; ACCELERATORS; BIOLOGICAL SHIELDS; COMPUTERIZED SIMULATION; CONCRETES; DESIGN; ELECTRON BEAMS; ELECTRON GUNS; ELECTRONS; MONTE CARLO METHOD; NEUTRON SOURCE FACILITIES; NEUTRON SOURCES; NEUTRONS; PHOTONS; RADIATION DOSES; SHIELDING MATERIALS

Citation Formats

Zhong, Z., and Gohar, Y. Accelerator shield design of KIPT neutron source facility. United States: N. p., 2013. Web.
Zhong, Z., & Gohar, Y. Accelerator shield design of KIPT neutron source facility. United States.
Zhong, Z., and Gohar, Y. 2013. "Accelerator shield design of KIPT neutron source facility". United States.
@article{osti_22212735,
title = {Accelerator shield design of KIPT neutron source facility},
author = {Zhong, Z. and Gohar, Y.},
abstractNote = {Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)},
doi = {},
url = {https://www.osti.gov/biblio/22212735}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jul 01 00:00:00 EDT 2013},
month = {Mon Jul 01 00:00:00 EDT 2013}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: