skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solvothermal synthesis of monodispersed CoZr{sub 4}(PO{sub 4}){sub 6} microspheres and their application as microwave absorber

Journal Article · · Materials Research Bulletin
 [1];  [1]; ;  [1];  [2]
  1. College of Chemistry, Beijing Normal University, Beijing 100875 (China)
  2. Key Laboratory of Cluster Science, Ministry of Education of China and Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China)

Graphical abstract: Monodispersed CoZr{sub 4}(PO{sub 4}){sub 6} porous microspheres with shell structure were synthesized via a combined solvothermal method and calcination route. The radar-wave absorbability of the purple sample calcined at 900 Degree-Sign C was strongest at the frequency of about 8.5 GHz. Highlights: Black-Right-Pointing-Pointer In this study we synthesized monodispersed CoZr{sub 4}(PO{sub 4}){sub 6} porous microspheres as microwave absorber. Black-Right-Pointing-Pointer The relationship between microstructures and the electromagnetic properties was indicated. Black-Right-Pointing-Pointer The radar-wave absorbability of the sample was included. -- Abstract: Monodispersed CoZr{sub 4}(PO{sub 4}){sub 6} microspheres with a diameter of 40 {mu}m were achieved via a combining solvothermal and calcination route. The crystallinity of the calcined microspheres with shell structure was improved, while the monodisperse property and morphologies remained. The possible formation mechanism of the porous CoZr{sub 4}(PO{sub 4}){sub 6} microspheres with nanoshell was proposed. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FT-IR) technologies, thermal analysis (TG and DSC), nitrogen adsorption-desorption isotherms and network analyzer. The sample calcined at 900 Degree-Sign C shows a strongest absorbability in the radar-wave absorbability test.

OSTI ID:
22212444
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 3; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English