skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study

Journal Article · · Materials Research Bulletin
 [1];  [2];  [3];  [4]
  1. Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Consejo Superior de Investigaciones Cientificas - CSIC - Universidad de Oviedo - UO - Principado de Asturias - PA, Parque Tecnologico de Asturias, 33428 Llanera (Spain)
  2. Department of Applied Physics and Electromagnetism, Universitat de Valencia, 46100 Burjassot (Spain)
  3. Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Consejo Superior de Investigaciones Cientificas - CSIC - Universidad de Oviedo -UO - Principado de Asturias- PA, Parque Tecnologico de Asturias, 33428 Llanera (Spain)
  4. Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (ICMM-CSIC), Cantoblanco, 28049 Madrid (Spain)

Highlights: Black-Right-Pointing-Pointer A cryogenic route has been used to obtain ceramic/metal nanostructured powders. Black-Right-Pointing-Pointer The powders present good homogeneity and dispersion of metal. Black-Right-Pointing-Pointer The metal nanoparticle size distributions are centred in 17-35 nm. Black-Right-Pointing-Pointer Both phases, ceramic and metal, present a high degree of crystallinity. Black-Right-Pointing-Pointer Good metal/ceramic interfaces due to epitaxial growth, studied by HRTEM. -- Abstract: This work describes a wet-processing route based on spray-freezing and subsequent lyophilization designed to obtain nanostructured ceramic/metal powders. Starting from the ceramic powder and the corresponding metal salt, a water-based suspension is sprayed on liquid nitrogen. The frozen powders are subsequently freeze-dried, calcined and reduced. The material was analyzed using X-ray diffraction analysis at all stages. High resolution transmission electron microscopy studies showed a uniform distribution of metal nanoparticles on the ceramic grain surfaces, good interfaces and high crystallinity, with an average metal particle size in the nanometric range.

OSTI ID:
22212412
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 2; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English