skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and luminescent properties of spindle-like CaWO{sub 4}:Sm{sup 3+} phosphors

Journal Article · · Materials Research Bulletin
 [1];  [2];  [1];  [1];  [3]
  1. College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China)
  2. Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024 (China)
  3. Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China)

Graphical abstract: In this paper, spindle-like CaWO{sub 4}:Sm{sup 3+} phosphors were prepared via a polyvinylpyrrolidone (PVP)-assisted sonochemical process. Dependence of emission intensity on Sm{sup 3+} ions concentration in the CaWO{sub 4}:Sm{sup 3+} phosphor were also calculated via a nonlinear fitting by using the formula y = ax/(1 + bx{sup c}). Highlights: Black-Right-Pointing-Pointer The samples were prepared via a PVP assisted sonochemical process. Black-Right-Pointing-Pointer The color coordinates for 1 mol% Sm{sup 3+} doped CaWO{sub 4} phosphor were calculated. Black-Right-Pointing-Pointer The D-D interaction is responsible for concentration quenching between Sm{sup 3+} ions. Black-Right-Pointing-Pointer The critical energy transfer distances (R{sub c}) were obtained. -- Abstract: Spindle-like CaWO{sub 4}:Sm{sup 3+} phosphors were prepared via a Polyvinylpyrrolidone (PVP)-assisted sonochemical process, and characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and photoluminescence spectroscopy (PL). The XRD results suggested that the prepared samples are single-phase. The FE-SEM images indicated that the prepared CaWO{sub 4}:Sm{sup 3+} phosphors are composed of many spindles with maximum average diameter of 150 nm and maximum average length of 500 nm. Under 404 nm excitation, the characteristic emissions corresponding to {sup 4}G{sub 5/2} {yields} {sup 6}H{sub J} (J = 5/2, 7/2, 9/2 and 11/2) transitions of Sm{sup 3+} in CaWO{sub 4} phosphors were observed. The color coordinates for 1 mol% Sm{sup 3+} doped CaWO{sub 4} phosphor were calculated to be (0.595, 0.404). The fluorescent concentration quenching of Sm{sup 3+} doped spindle-like phosphors was studied based on the Van Uitert's model, and it was found that the electric dipole-dipole (D-D) interaction is the dominant energy transfer mechanism between Sm{sup 3+} ions in the CaWO{sub 4}:Sm{sup 3+} phosphors. The critical energy transfer distance was estimated.

OSTI ID:
22212386
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 1; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English