skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis of Pt/PEI-MWCNT composite materials on polyethyleneimine-functionalized MWNTs as supports

Journal Article · · Materials Research Bulletin
;  [1]
  1. Department of Chemical Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

Graphical abstract: Schematic diagram for (a) the preparation of Pt/MWCNT functionalized with PEI and (b) TEM of Pt/PEI-MWCNT. Highlights: Black-Right-Pointing-Pointer We prepared Pt/PEI/MWCNT where MWCNT was first functionalized by PEI (polyethyleneimine) followed by Pt deposit onto it. Black-Right-Pointing-Pointer PEI functionalization provided high density homogeneous functional groups on MWCNT's sidewall. Black-Right-Pointing-Pointer Cationic PEI leads to homogeneous dispersion in solutions such as water and organic solvents. Black-Right-Pointing-Pointer Pt/PEI/MWCNT catalyst exhibits excellent electrocatalytic activity compared to that of Pt/MWCNT catalyst obtained with polyvinylpyrrolidine (PVP). -- Abstract: Composite materials with highly dispersed platinum (Pt) nanoparticles on multiwalled carbon nanotubes (MWCNTs), functionalized with polyethyleneimine (PEI) by a noncovalent method were prepared. The PEI-functionalization provided high density homogeneous functional groups on the MWCNTs' sidewalls for binding Pt nanoparticles. Cationic PEI leads to homogeneous dispersion in solutions such as water and organic solvents. The effects of a reducing agent on the Pt nanoparticles that form on the surfaces of the MWCNT were studied by varying the molar ratio of NaOH to H{sub 2}PtCl{sub 6}. These composite materials were characterized with transmission electron micrograph (TEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). The Pt/PEI-MWCNT catalyst exhibits excellent electrocatalytic activity and compared with Pt/PVP-MWCNT catalysts obtained with polyvinylpyrrolidone (PVP). Finally, the cyclic voltammogram of methanol electrooxidation for Pt/PEI-MWCNT shows better tolerance to CO and methanol oxidation to CO{sub 2} than of Pt/PVP-MWCNT.

OSTI ID:
22212360
Journal Information:
Materials Research Bulletin, Vol. 46, Issue 12; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English