skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal structure and characterization of a novel organic optical crystal: 2-Aminopyridinium trichloroacetate

Journal Article · · Materials Research Bulletin
 [1];  [2];  [3]
  1. Centre for Crystal Growth, SSN College of Engineering, Kalavakkam-603 110 (India)
  2. Department of Physics, Crescent Engineering College, Chennai-600 048 (India)
  3. C.G.C. Section, National Physical Laboratory, New Delhi-110 012 (India)

Research highlights: {yields} Good quality crystals of 2-aminopyridinium trichloroacetate were grown for first time. {yields} 2-Aminopyridinium trichloroacetate crystal belongs to monoclinic crystal system with space group P21/c. {yields} 2-Aminopyridinium trichloroacetate crystal exhibits third order nonlinear optical properties. {yields} 2-Aminopyridinium trichloroacetate is a low dielectric constant material. -- Abstract: 2-Aminopyridinium trichloroacetate, a novel organic optical material has been synthesized and crystals were grown from aqueous solution employing the technique of controlled evaporation. 2-Aminopyridinium trichloroacetate crystallizes in monoclinic system with space group P2{sub 1}/c and the lattice parameters are a = 8.598(5) A, b = 11.336(2) A, c = 11.023(2) A, {beta} = 102.83(1){sup o} and volume = 1047.5(3) A{sup 3}. High-resolution X-ray diffraction measurements were performed to analyze the structural perfection of the grown crystals. Thermal analysis shows a sharp endothermic peak at 124 {sup o}C due to melting reaction of 2-aminopyridinium trichloroacetate. UV-vis-NIR studies reveal that 2-aminopyridinium trichloroacetate has UV cutoff wavelength at 354 nm. Dielectric studies show that dielectric constant and dielectric loss decreases with increasing frequency and finally it becomes almost a constant at higher frequencies for all temperatures. The negative nonlinear optical parameters of 2-aminopyridinium trichloroacetate were derived by the Z-scan technique.

OSTI ID:
22210051
Journal Information:
Materials Research Bulletin, Vol. 46, Issue 5; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English