skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and characterization of Gd{sup 3+} and Nd{sup 3+} co-doped ceria by using citric acid-nitrate combustion method

Journal Article · · Materials Research Bulletin
 [1];  [1]; ; ; ;  [1]
  1. Department of Chemistry, Zhengzhou University, Zhengzhou 450052 (China)

A series of Ce{sub 0.8}Gd{sub 0.2-x}Nd{sub x}O{sub 2-{delta}} (x = 0-0.20) compositions have been synthesized by citric acid-nitrate combustion method. XRD measurements indicate that all the obtained materials crystallized in cubic fluorite-type structure. Lattice parameters were calculated by Rietveld method and the parameter a values in Ce{sub 0.8}Gd{sub 0.2-x}Nd{sub x}O{sub 2-{delta}} system obey Vegard's law, a (A) = 5.4224 + 0.1208x. The obtained powders have good sinterability and the relative density could reach above 95% after being sintered at 1400 {sup o}C. Impedance spectroscopy measurements indicated that the conductivity of Ce{sub 0.8}Gd{sub 0.2-x}Nd{sub x}O{sub 2-{delta}} first increased and then decreased with Nd dopant content x. The maximum conductivity, {sigma}{sub 700{sup o}C} = 6.26 x 10{sup -2} S/cm, was found in Ce{sub 0.8}Gd{sub 0.12}Nd{sub 0.08}O{sub 1.9} when sintered at 1300 {sup o}C. The corresponding activation energies of conduction had a minimum value E{sub a} = 0.676 eV. The results tested experimentally the validity of the effective atomic number concept of recent density functional theory, which had suggested that co-dopant with effective atomic number between 61 (Pm) and 62 (Sm) was the ideal dopant exhibiting high ionic conductivity and low activation energy.

OSTI ID:
22209978
Journal Information:
Materials Research Bulletin, Vol. 46, Issue 1; Other Information: Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English