skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria

Journal Article · · Biochemical and Biophysical Research Communications
; ;  [1];  [2];  [1];  [1];  [1]; ; ;  [3]
  1. Division of Biology, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125 (United States)
  2. EM Core Facility, City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 (United States)
  3. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109 (United States)

Highlights: {yields} No long helical filaments are seen near or along rod-shaped bacterial inner membranes by electron cryo-tomography. {yields} Electron cryo-tomography has the resolution to detect single filaments in vivo. -- Abstract: How rod-shaped bacteria form and maintain their shape is an important question in bacterial cell biology. Results from fluorescent light microscopy have led many to believe that the actin homolog MreB and a number of other proteins form long helical filaments along the inner membrane of the cell. Here we show using electron cryotomography of six different rod-shaped bacterial species, at macromolecular resolution, that no long (>80 nm) helical filaments exist near or along either surface of the inner membrane. We also use correlated cryo-fluorescent light microscopy (cryo-fLM) and electron cryo-tomography (ECT) to identify cytoplasmic bundles of MreB, showing that MreB filaments are detectable by ECT. In light of these results, the structure and function of MreB must be reconsidered: instead of acting as a large, rigid scaffold that localizes cell-wall synthetic machinery, moving MreB complexes may apply tension to growing peptidoglycan strands to ensure their orderly, linear insertion.

OSTI ID:
22204889
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 407, Issue 4; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English

Similar Records

The role of CenKR in the coordination of Rhodobacter sphaeroides cell elongation and division
Journal Article · Wed Jun 07 00:00:00 EDT 2023 · mBio (Online) · OSTI ID:22204889

Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography
Journal Article · Mon Mar 19 00:00:00 EDT 2018 · Proceedings of the National Academy of Sciences of the United States of America · OSTI ID:22204889

Molecular mechanism of bundle formation by the bacterial actin ParM
Journal Article · Fri Jan 22 00:00:00 EST 2010 · Biochemical and Biophysical Research Communications · OSTI ID:22204889