skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coherency strain enhanced dielectric-temperature property of rare-earth doped BaTiO{sub 3}

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4798273· OSTI ID:22162801
;  [1]
  1. Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

Core/shell-grained BaTiO{sub 3} samples were prepared with addition of rare earth elements. The core/shell interface was semi-coherent, and many misfit dislocations formed in Dy-doped samples. In contrast, a coherent interface and few dislocations were observed in Ho- and Er-doped samples. Dy-doped samples exhibited poor temperature stability, showing a peak with no frequency dispersion. Ho- and Er-doped samples exhibited a broad curve with frequency dispersion. This improved temperature stability is attributed to the coherency strain, which leads to the formation of polar nano-regions in the shell. Coherency at the core/shell interface is critical to improve the temperature stability of core/shell-structured BaTiO{sub 3}.

OSTI ID:
22162801
Journal Information:
Applied Physics Letters, Vol. 102, Issue 11; Other Information: (c) 2013 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English