skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WARM IONIZED GAS REVEALED IN THE MAGELLANIC BRIDGE TIDAL REMNANT: CONSTRAINING THE BARYON CONTENT AND THE ESCAPING IONIZING PHOTONS AROUND DWARF GALAXIES

Journal Article · · Astrophysical Journal
;  [1]
  1. Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States)

The Magellanic System includes some of the nearest examples of galaxies disturbed by galaxy interactions. These interactions have redistributed much of their gas into the halos of the Milky Way (MW) and the Magellanic Clouds. We present Wisconsin H{alpha} Mapper kinematically resolved observations of the warm ionized gas in the Magellanic Bridge over the velocity range of +100 to +300 km s{sup -1} in the local standard of rest reference frame. These observations include the first full H{alpha} intensity map and the corresponding intensity-weighted mean velocity map of the Magellanic Bridge across (l, b) = (281 Degree-Sign .5, -30 Degree-Sign .0) to (302. Degree-Sign 5, -46. Degree-Sign 7). Using the H{alpha} emission from the Small Magellanic Cloud (SMC)-Tail and the Bridge, we estimate that the mass of the ionized material is between (0.7-1.7) Multiplication-Sign 10{sup 8} M{sub Sun }, compared to 3.3 Multiplication-Sign 10{sup 8} M{sub Sun} for the neutral mass over the same region. The diffuse Bridge is significantly more ionized than the SMC-Tail, with an ionization fraction of 36%-52% compared to 5%-24% for the Tail. The H{alpha} emission has a complex multiple-component structure with a velocity distribution that could trace the sources of ionization or distinct ionized structures. We find that incident radiation from the extragalactic background and the MW alone are insufficient to produced the observed ionization in the Magellanic Bridge and present a model for the escape fraction of the ionizing photons from both the SMC and Large Magellanic Cloud (LMC). With this model, we place an upper limit of 4.0% for the average escape fraction of ionizing photons from the LMC and an upper limit of 5.5% for the SMC. These results, combined with the findings of a half a dozen other studies for dwarf galaxies in different environments, provide compelling evidence that only a small percentage of the ionizing photons escape from dwarf galaxies in the present epoch to influence their surroundings.

OSTI ID:
22140127
Journal Information:
Astrophysical Journal, Vol. 771, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English