skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SUB-PeV NEUTRINOS FROM TeV UNIDENTIFIED SOURCES IN THE GALAXY

Journal Article · · Astrophysical Journal

The IceCube collaboration discovery of 28 high-energy neutrinos over the energy range 30 TeV {approx}< {epsilon}{sub {nu}} {approx}< 1 PeV, a 4.3{sigma} excess over expected backgrounds, represents the first high-confidence detection of cosmic neutrinos at these energies. In light of this discovery, we explore the possibility that some of the sub-PeV cosmic neutrinos might originate in our Galaxy's TeV unidentified (TeV UnID) sources. While typically resolved at TeV energies, these sources lack prominent radio or X-ray counterparts, and so have been considered promising sites for hadron acceleration within our Galaxy. Modeling the TeV UnID sources as Galactic hypernova remnants, we predict sub-PeV neutrino fluxes and spectra consistent with their contributing a minority of n{sub {nu}} {approx}< 2 of the observed events. This is consistent with our analysis of the spatial distribution of the sub-PeV neutrinos and TeV UnID sources, which finds that a best-fit of one, and maximum of 3.8 (at 90% confidence), of the Almost-Equal-To 16 non-atmospheric sub-PeV neutrinos may originate in the TeV UnID sources, with the remaining 75%-95% of events being drawn from an isotropic background. If our scenario is correct, we expect excess sub-PeV neutrinos to accumulate along the Galactic plane, within |l| {approx}< {+-} 30 Degree-Sign of the Galactic center and in the Cygnus region, as observations by IceCube and other high-energy neutrino facilities go forward. Our scenario also has implications for radio, X-ray, and TeV observations of the TeV UnID sources.

OSTI ID:
22133926
Journal Information:
Astrophysical Journal, Vol. 774, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English