skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanostructured ceria based thin films ({<=}1 {mu}m) As cathode/electrolyte interfaces

Journal Article · · Journal of Solid State Chemistry
 [1]; ;  [2]; ;  [3];  [1]
  1. Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 6-UMR 7574-College de France, 11 Place Marcelin Berthelot, 75005 Paris (France)
  2. CEA-Le Ripault, LSCG, BP 15, 37000 Monts (France)
  3. CEA-Le Ripault, LCCA, BP 15, 37000 Monts (France)

Gadolinium doped cerium oxide (CGO: Ce{sub 0,9}Gd{sub 0,1}O{sub 2-{delta}}) films were used as an oxygen anion diffusion layer at the cathode/electrolyte interface of Solid Oxide Fuel Cells (SOFCs), between LSCF (lanthanum strontium cobalt ferrite) and YSZ (yttria-stabilized zirconia). Thin ({approx}100 nm) and thick ({approx}700 nm) mesoporous CGO layers were synthesized through a sol-gel process including organic template coupled with the dip-coating method. Structural and microstructural characterizations were performed, highlighting a well-bonded crystalline CGO nanoparticles network which delineates a 3-D inter-connected mesoporous network. Their electrical behaviors were investigated by impedance spectroscopy analysis of YSZ/mesoporous-CGO/LSCF half-cell. Anode-supported SOFCs, operating at 800 Degree-Sign C, with either dense or mesoporous CGO dip-coated interlayers were also fabricated [NiO-YSZ anode/YSZ/CGO/LSCF cathode]. The impact of the mesoporous CGO interlayers on SOFCs performances was investigated by galvanostatic analysis and compared to the behavior of a dense CGO interlayer. The polarization curves revealed an enhancement in the electrical performance of the cell, which is assigned to a decrease of the polarization resistance at the cathode/electrolyte interface. The integrity and connectivity of the CGO nanoparticles bonded network facilitates O{sup 2-} transport across the interface. - Graphical abstract: Thin and thick CGO films have been prepared through a sol-gel process and their potential application as SOFC cathode/electrolyte interlayer in SOFC has been investigated. Highlights: Black-Right-Pointing-Pointer Mesoporous ceria based thin films exhibit interesting performances for Solid Oxide Fuel Cell. Black-Right-Pointing-Pointer Mesoporous films were synthesized through the sol-gel process combined with the dip-coating. Black-Right-Pointing-Pointer Integrity and connectivity of the nanoparticles facilitates O{sup 2-} transport across the interface.

OSTI ID:
22131164
Journal Information:
Journal of Solid State Chemistry, Vol. 197; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English