skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Growth of tungsten nanoparticles in direct-current argon glow discharges

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4802809· OSTI ID:22130493
; ;  [1]
  1. Laboratoire de Physique des Interactions Ioniques et Moleculaires, CNRS-Aix-Marseille Universite, 13397 Marseille (France)

The growth of nanoparticles from the sputtering of a tungsten cathode in DC argon glow discharges is reported. The study was performed at fixed argon pressure and constant discharge current. The growth by successive agglomerations is evidenced. First, tungsten nanocrystallites agglomerate into primary particles, the most probable size of which being {approx}30 nm. Primary particles of this size are observed for all plasma durations and always remain the most numerous in the discharge. Primary particles quickly agglomerate to form particles with size up to {approx}150 nm. For short plasma duration, log-normal functions describe accurately the dust particle size distributions. On the contrary, for long discharge durations, a second hump appears in the distributions toward large particle sizes. In the meantime, the discharge voltage, electron density, and emission line intensities strongly evolve. Their evolutions can be divided in four separate phases and exhibit unusual distinctive features compared to earlier observations in discharges in which particles were growing. The evolution of the different parameters is explained by a competition between the surface state of the tungsten cathode and the influence of the growing nanoparticles. The differences with sputtering glow discharges and chemically active plasmas suggest that the nanoparticle growth and its influence on discharge parameters is system and material dependent.

OSTI ID:
22130493
Journal Information:
Physics of Plasmas, Vol. 20, Issue 4; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English