skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SPECTRAL STATE EVOLUTION OF 4U 1820-30: THE STABILITY OF THE SPECTRAL INDEX OF THE COMPTONIZATION TAIL

Journal Article · · Astrophysical Journal
;  [1];  [2]
  1. Dipartimento di Fisica, Universita di Ferrara, Via Saragat 1, I-44122 Ferrara (Italy)
  2. Moscow M.V. Lomonosov State University/Sternberg Astronomical Institute, Universitetsky Prospect 13, Moscow 119992 (Russian Federation)

We analyze the X-ray spectra and their timing properties of the compact X-ray binary 4U 1820-30. We establish spectral transitions in this source seen with BeppoSAX and the Rossi X-ray Timing Explorer (RXTE). During the RXTE observations (1996-2009), the source was in the soft state approximately {approx}75% of the time making the lower banana and upper banana transitions combined with long-term low-high state transitions. We reveal that all of the X-ray spectra of 4U 1820-30 are fit by a combination of a thermal (Blackbody) component, a Comptonization component (COMPTB), and a Gaussian-line component. Thus, using this spectral analysis, we find that the photon power-law index {Gamma} of the Comptonization component is almost unchangeable ({Gamma} {approx} 2), while the electron temperature kT{sub e} changes from 2.9 to 21 keV during these spectral events. We also establish that for these spectral events the normalization of the COMPTB component (which is proportional to the mass accretion rate M-dot ) increases by a factor of eight when kT{sub e} decreases from 21 keV to 2.9 keV. Previously, this index stability effect was also found analyzing X-ray data for the Z-source GX 340+0 and for the atolls 4U 1728-34 and GX 3+1. Thus, we can suggest that this spectral stability property is a spectral signature of an accreting neutron star source. On the other hand, in a black hole binary {Gamma} monotonically increases with M-dot and ultimately its value saturates at large M-dot .

OSTI ID:
22126877
Journal Information:
Astrophysical Journal, Vol. 767, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English