skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Calculation of the Phenix end-of-life test 'Control Rod Withdrawal' with the ERANOS code

Conference ·
OSTI ID:22107779
 [1]
  1. Institut de Radioprotection et de Surete Nucleaire IRSN, PSN-EXP/SNC/LNR, BP 17, 92262 Fontenay-aux-Roses (France)

The Inst. of Radiological Protection and Nuclear Safety (IRSN) acts as technical support to French public authorities. As such, IRSN is in charge of safety assessment of operating and under construction reactors, as well as future projects. In this framework, one current objective of IRSN is to evaluate the ability and accuracy of numerical tools to foresee consequences of accidents. Neutronic studies step in the safety assessment from different points of view among which the core design and its protection system. They are necessary to evaluate the core behavior in case of accident in order to assess the integrity of the first barrier and the absence of a prompt criticality risk. To reach this objective one main physical quantity has to be evaluated accurately: the neutronic power distribution in core during whole reactor lifetime. Phenix end of life tests, carried out in 2009, aim at increasing the experience feedback on sodium cooled fast reactors. These experiments have been done in the framework of the development of the 4. generation of nuclear reactors. Ten tests have been carried out: 6 on neutronic and fuel aspects, 2 on thermal hydraulics and 2 for the emergency shutdown. Two of them have been chosen for an international exercise on thermal hydraulics and neutronics in the frame of an IAEA Coordinated Research Project. Concerning neutronics, the Control Rod Withdrawal test is relevant for safety because it allows evaluating the capability of calculation tools to compute the radial power distribution on fast reactors core configurations in which the flux field is very deformed. IRSN participated to this benchmark with the ERANOS code developed by CEA for fast reactors studies. This paper presents the results obtained in the framework of the benchmark activity. A relatively good agreement was found with available measures considering the approximations done in the modeling. The work underlines the importance of burn-up calculations in order to have a fine core concentrations mesh for the calculation of the power distribution. (authors)

Research Organization:
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States)
OSTI ID:
22107779
Resource Relation:
Conference: ICAPP '12: 2012 International Congress on Advances in Nuclear Power Plants, Chicago, IL (United States), 24-28 Jun 2012; Other Information: Country of input: France; 4 refs.; Related Information: In: Proceedings of the 2012 International Congress on Advances in Nuclear Power Plants - ICAPP '12| 2799 p.
Country of Publication:
United States
Language:
English