skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gas-to-cluster effects in S 2p-excited SF{sub 6}

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4798975· OSTI ID:22105474
; ;  [1]; ; ; ; ;  [2]
  1. Physikalische und Theoretische Chemie, Institut fuer Chemie und Biochemie, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin (Germany)
  2. Institute of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation)

High resolution X-ray spectroscopic studies on free SF{sub 6} molecules and SF{sub 6} clusters near the S 2p ionization thresholds are reported. Spectral changes occurring in clusters for the intense molecular-like S 2p{sub 1/2,3/2}{yields} 6a{sub 1g}-, 2t{sub 2g}-, and 4e{sub g}-resonances are examined in detail. Neither gas-to-cluster spectral shifts nor changes in peak shape are observed for the pre-edge 6a{sub 1g}-band. Significant changes in band shape and distinct gas-to-cluster shifts occur in the S 2p{sub 1/2,3/2}{yields} 2t{sub 2g}- and 4e{sub g}-transitions. These are found in the S 2p-ionization continua. The quasiatomic approach is used to assign the experimental results. It is shown that a convolution of asymmetric and symmetric contributions from Lorentzian and Gaussian line shapes allows us to model the spectral distribution of oscillator strength for the S 2p{sub 1/2,3/2}{yields} 2t{sub 2g}-, and 4e{sub g}-transitions. The asymmetry is due to trapping of the photoelectron within the finite size potential barrier. The Lorentzian contribution is found to be dominating in the line shape of the S 2p{yields} 2t{sub 2g}- and 4e{sub g}-bands. The spectroscopic parameters of the spin-orbit components of both the 2t{sub 2g}- and 4e{sub g}-bands are extracted and their gas-to-cluster changes are analyzed. The photoelectron trapping times in free and clustered SF{sub 6} molecules are determined. Specifically, it is shown that spectral changes in clusters reflected in core-to-valence-transitions are due to a superposition of the singly scattered photoelectron waves at the neighboring molecules with the primary and multiply scattered waves within the molecular cage.

OSTI ID:
22105474
Journal Information:
Journal of Chemical Physics, Vol. 138, Issue 14; Other Information: (c) 2013 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English