skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Is radiography justified for the evaluation of patients presenting with cervical spine trauma?

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.3213521· OSTI ID:22102104
; ;  [1]
  1. Department of Medical Physics, Faculty of Medicine, University of Crete, P.O. Box 2208, Iraklion, 71003 Crete (Greece) and Department of Natural Sciences, Technological Education Institute of Crete, P.O. Box 140, Iraklion 71004 Crete (Greece)

Conventional radiography has been for decades the standard method of evaluation for cervical spine trauma patients. However, currently available helical multidetector CT scanners allow multiplanar reconstruction of images, leading to increased diagnostic accuracy. The purpose of this study was to determine the relative benefit/risk ratio between cervical spine CT and cervical spine radiography and between cervical spine CT and cervical spine radiography, followed by CT as an adjunct for positive findings. A decision analysis model for the determination of the optimum imaging technique was developed. The sensitivity and specificity of CT and radiography were obtained by dedicated meta-analysis. Lifetime attributable risk of mortal cancer from CT and radiography was calculated using updated organ-specific risk coefficients and organ-absorbed doses. Patient organ doses from radiography were calculated using Monte Carlo techniques, simulated exposures performed on an anthropomorphic phantom, and thermoluminescence dosimetry. A prospective patient study was performed regarding helical CT scans of the cervical spine. Patient doses were calculated based on the dose-length-product values and Monte Carlo-based CT dosimetry software program. Three groups of patient risk for cervical spine fracture were incorporated in the decision model on the basis of hypothetical trauma mechanism and clinical findings. Radiation effects were assessed separately for males and females for four age groups (20, 40, 60, and 80 yr old). Effective dose from radiography amounts to 0.050 mSv and from a typical CT scan to 3.8 mSv. The use of CT in a hypothetical cohort of 10{sup 6} patients prevents approximately 130 incidents of paralysis in the low risk group (a priori fracture probability of 0.5%), 500 in the moderate risk group (a priori fracture probability of 2%), and 5100 in the high risk group (a priori fracture probability of 20%). The expense of this CT-based prevention is 15-32 additional radiogenic lethal cancer incidents. According to the decision model calculations, the use of CT is more favorable over the use of radiography alone or radiography with CT by a factor of 13, for low risk 20 yr old patients, to a factor of 23, for high risk patients younger than 80 yr old. The radiography/CT imaging strategy slightly outperforms plain radiography for high and moderate risk patients. Regardless of the patient age, sex, and fracture risk, the higher diagnostic accuracy obtained by the CT examination counterbalances the increase in dose compared to plain radiography or radiography followed by CT only for positive radiographs and renders CT utilization justified and the radiographic screening redundant.

OSTI ID:
22102104
Journal Information:
Medical Physics, Vol. 36, Issue 10; Other Information: (c) 2009 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English