skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DIFFUSIVE SHOCK ACCELERATION SIMULATIONS OF RADIO RELICS

Journal Article · · Astrophysical Journal
 [1];  [2]
  1. Department of Earth Sciences, Pusan National University, Pusan 609-735 (Korea, Republic of)
  2. Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

Recent radio observations have identified a class of structures, so-called radio relics, in clusters of galaxies. The radio emission from these sources is interpreted as synchrotron radiation from GeV electrons gyrating in {mu}G-level magnetic fields. Radio relics, located mostly in the outskirts of clusters, seem to associate with shock waves, especially those developed during mergers. In fact, they seem to be good structures to identify and probe such shocks in intracluster media (ICMs), provided we understand the electron acceleration and re-acceleration at those shocks. In this paper, we describe time-dependent simulations for diffusive shock acceleration at weak shocks that are expected to be found in ICMs. Freshly injected as well as pre-existing populations of cosmic-ray (CR) electrons are considered, and energy losses via synchrotron and inverse Compton are included. We then compare the synchrotron flux and spectral distributions estimated from the simulations with those in two well-observed radio relics in CIZA J2242.8+5301 and ZwCl0008.8+5215. Considering that CR electron injection is expected to be rather inefficient at weak shocks with Mach number M {approx}< a few, the existence of radio relics could indicate the pre-existing population of low-energy CR electrons in ICMs. The implication of our results on the merger shock scenario of radio relics is discussed.

OSTI ID:
22092433
Journal Information:
Astrophysical Journal, Vol. 756, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English