skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SUPER-CHANDRASEKHAR-MASS LIGHT CURVE MODELS FOR THE HIGHLY LUMINOUS TYPE Ia SUPERNOVA 2009dc

Journal Article · · Astrophysical Journal
 [1];  [2];  [3];  [4];  [5];  [6]
  1. Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
  2. National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)
  3. Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)
  4. Institute for Theoretical and Experimental Physics, 117218 Moscow (Russian Federation)
  5. Sternberg Astronomical Institute, Lomonosov Moscow State University, 119992 Moscow (Russian Federation)
  6. College of Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan)

Several highly luminous Type Ia supernovae (SNe Ia) have been discovered. Their high luminosities are difficult to explain with the thermonuclear explosions of Chandrasekhar-mass white dwarfs (WDs). In the present study, we estimate the progenitor mass of SN 2009dc, one of the extremely luminous SNe Ia, using the hydrodynamical models as follows. Explosion models of super-Chandrasekhar-mass (super-Ch-mass) WDs are constructed, and multi-color light curves (LCs) are calculated. The comparison between our calculations and the observations of SN 2009dc suggests that the exploding WD has a super-Ch mass of 2.2-2.4 M{sub Sun }, producing 1.2-1.4 M{sub Sun} of {sup 56}Ni, if the extinction by its host galaxy is negligible. If the extinction is significant, the exploding WD is as massive as {approx}2.8 M{sub Sun }, and {approx}1.8 M{sub Sun} of {sup 56}Ni is necessary to account for the observations. Whether the host-galaxy extinction is significant or not, the progenitor WD must have a thick carbon-oxygen layer in the outermost zone (20%-30% of the WD mass), which explains the observed low expansion velocity of the ejecta and the presence of carbon. Our estimate of the mass of the progenitor WD, especially for the extinction-corrected case, is challenging to the current scenarios of SNe Ia. Implications for the progenitor scenarios are also discussed.

OSTI ID:
22092335
Journal Information:
Astrophysical Journal, Vol. 756, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English