skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantifying uncertainty in LCA-modelling of waste management systems

Journal Article · · Waste Management
 [1];  [2];  [1]
  1. Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)
  2. BRGM, ENAG BRGM-School, BP 6009, 3 Avenue C. Guillemin, 45060 Orleans Cedex (France)

Highlights: Black-Right-Pointing-Pointer Uncertainty in LCA-modelling of waste management is significant. Black-Right-Pointing-Pointer Model, scenario and parameter uncertainties contribute. Black-Right-Pointing-Pointer Sequential procedure for quantifying uncertainty is proposed. Black-Right-Pointing-Pointer Application of procedure is illustrated by a case-study. - Abstract: Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste management, various methods have been implemented but a systematic method for uncertainty analysis of waste-LCA studies is lacking. The objective of this paper is (1) to present the sources of uncertainty specifically inherent to waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a sequence of four steps combining the selected methods: (Step 1) a sensitivity analysis evaluating the sensitivities of the results with respect to the input uncertainties, (Step 2) an uncertainty propagation providing appropriate tools for representing uncertainties and calculating the overall uncertainty of the model results, (Step 3) an uncertainty contribution analysis quantifying the contribution of each parameter uncertainty to the final uncertainty and (Step 4) as a new approach, a combined sensitivity analysis providing a visualisation of the shift in the ranking of different options due to variations of selected key parameters. This tiered approach optimises the resources available to LCA practitioners by only propagating the most influential uncertainties.

OSTI ID:
22086570
Journal Information:
Waste Management, Vol. 32, Issue 12; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0956-053X
Country of Publication:
United States
Language:
English