skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Two-year performance by evapotranspiration covers for municipal solid waste landfills in northwest Ohio

Journal Article · · Waste Management
 [1];  [2]
  1. Department of Environmental Sciences, University of Toledo, Lake Erie Center, 6200 Bayshore Rd., Oregon, OH 43616 (United States)
  2. Department of Environmental Sciences, University of Toledo, 2801 W. Bancroft, Mail Stop 604, Toledo, OH 43606 (United States)

Highlights: Black-Right-Pointing-Pointer All ET covers produced rates of percolation less than 32 cm yr{sup -1}, the maximum allowable rate by the Ohio EPA. Black-Right-Pointing-Pointer Dredged sediment provided sufficient water storage and promoted growth by native plant species. Black-Right-Pointing-Pointer Native plant mixtures attained acceptable rates of evapotranspiration throughout the growing season. - Abstract: Evapotranspiration (ET) covers have gained interest as an alternative to conventional covers for the closure of municipal solid waste (MSW) landfills because they are less costly to construct and are expected to have a longer service life. Whereas ET covers have gained acceptance in arid and semi-arid regions (defined by a precipitation (P) to potential evapotranspiration (PET) ratio less than 0.75) by meeting performance standards (e.g. rate of percolation), it remains unclear whether they are suitable for humid regions (P:PET greater than 0.75). The goal of this project is to extend their application to northwest Ohio (P:PET equals 1.29) by designing covers that produce a rate of percolation less than 32 cm yr{sup -1}, the maximum acceptable rate by the Ohio Environmental Protection Agency (OEPA). Test ET covers were constructed in drainage lysimeters (1.52 m diameter, 1.52 m depth) using dredged sediment amended with organic material and consisted of immature (I, plants seeded onto soil) or mature (M, plants transferred from a restored tall-grass prairie) plant mixtures. The water balance for the ET covers was monitored from June 2009 to June 2011, which included measured precipitation and percolation, and estimated soil water storage and evapotranspiration. Precipitation was applied at a rate of 94 cm yr{sup -1} in the first year and at rate of 69 cm yr{sup -1} in the second year. During the first year, covers with the M plant mixture produced noticeably less percolation (4 cm) than covers with the I plant mixture (17 cm). However, during the second year, covers with the M plant mixture produced considerably more percolation (10 cm) than covers with the I plant mixture (3 cm). This is likely due to a decrease in the aboveground biomass for the M plant mixture from year 1 (1008 g m{sup -2}) to year 2 (794 g m{sup -2}) and an increase for the I plant mixture from year 1 (644 g m{sup -2}) to year 2 (1314 g m{sup -2}). Over the 2-year period, the mean annual rates of percolation for the covers with the M and I plant mixtures were 7 and 8 cm yr{sup -1}, which are below the OEPA standard. The results suggest the application of ET covers be extended to northwest Ohio and other humid regions.

OSTI ID:
22086569
Journal Information:
Waste Management, Vol. 32, Issue 12; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0956-053X
Country of Publication:
United States
Language:
English