skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: INJECTION AND ACCELERATION OF ELECTRONS AT A STRONG SHOCK: RADIO AND X-RAY STUDY OF YOUNG SUPERNOVA 2011dh

Journal Article · · Astrophysical Journal
 [1]
  1. Kavli Institute for the Physics and Mathematics of the Universe (Kavli-IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

In this paper, we develop a model for the radio and X-ray emissions from the Type IIb supernova (SN IIb) 2011dh in the first 100 days after the explosion, and investigate a spectrum of relativistic electrons accelerated at a strong shock wave. The widely accepted theory of particle acceleration, the so-called diffusive shock acceleration (DSA) or Fermi mechanism, requires seed electrons with modest energy with {gamma} {approx} 1-100, and little is known about this pre-acceleration mechanism. We derive the energy distribution of relativistic electrons in this pre-accelerated energy regime. We find that the efficiency of the electron acceleration must be low, i.e., {epsilon}{sub e} {approx}< 10{sup -2} as compared to the conventionally assumed value of {epsilon}{sub e} {approx} 0.1. Furthermore, independent of the low value of {epsilon}{sub e}, we find that the X-ray luminosity cannot be attributed to any emission mechanisms suggested as long as these electrons follow the conventionally assumed single power-law distribution. A consistent view between the radio and X-ray can only be obtained if the pre-acceleration injection spectrum peaks at {gamma} {approx} 20-30 and then only a fraction of these electrons eventually experience the DSA-like acceleration toward the higher energy-then the radio and X-ray properties are explained through the synchrotron and inverse Compton mechanisms, respectively. Our findings support the idea that the pre-acceleration of the electrons is coupled with the generation/amplification of the magnetic field.

OSTI ID:
22086546
Journal Information:
Astrophysical Journal, Vol. 758, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English