skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A STUDY OF THE HELIOCENTRIC DEPENDENCE OF SHOCK STANDOFF DISTANCE AND GEOMETRY USING 2.5D MAGNETOHYDRODYNAMIC SIMULATIONS OF CORONAL MASS EJECTION DRIVEN SHOCKS

Journal Article · · Astrophysical Journal
 [1];  [2];  [3];  [4];  [5]
  1. University Corporation for Atmospheric Research (UCAR), Boulder, CO 80307 (United States)
  2. Computational Astrophysics Laboratory, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
  3. Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan)
  4. Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)
  5. Experimental Space Plasma Group, University of New Hampshire, Durham, NH 03824 (United States)

We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast coronal mass ejections (CMEs) and their associated shock fronts between 10 Rs and 300 Rs. We investigate the relative change in the shock standoff distance, {Delta}, as a fraction of the CME radial half-width, D {sub OB} (i.e., {Delta}/D {sub OB}). Previous hydrodynamic studies have related the shock standoff distance for Earth's magnetosphere to the density compression ratio (DR; {rho} {sub u}/{rho} {sub d}) measured across the bow shock. The DR coefficient, k {sub dr}, which is the proportionality constant between the relative standoff distance ({Delta}/D {sub OB}) and the compression ratio, was semi-empirically estimated as 1.1. For CMEs, we show that this value varies linearly as a function of heliocentric distance and changes significantly for different radii of curvature of the CME's leading edge. We find that a value of 0.8 {+-} 0.1 is more appropriate for small heliocentric distances (<30 Rs) which corresponds to the spherical geometry of a magnetosphere presented by Seiff. As the CME propagates its cross section becomes more oblate and the k {sub dr} value increases linearly with heliocentric distance, such that k {sub dr} = 1.1 is most appropriate at a heliocentric distance of about 80 Rs. For terrestrial distances (215 Rs) we estimate k {sub dr} = 1.8 {+-} 0.3, which also indicates that the CME cross-sectional structure is generally more oblate than that of Earth's magnetosphere. These alterations to the proportionality coefficients may serve to improve investigations into the estimates of the magnetic field in the corona upstream of a CME as well as the aspect ratio of CMEs as measured in situ.

OSTI ID:
22086407
Journal Information:
Astrophysical Journal, Vol. 759, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English