skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stabilization of the Rayleigh-Taylor instability in quantum magnetized plasmas

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4737162· OSTI ID:22085917
; ;  [1];  [2]
  1. HEDPS and CAPT, Peking University, Beijing 100871 (China)
  2. Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

In this research, stabilization of the Rayleigh-Taylor instability (RTI) due to density gradients, magnetic fields, and quantum effects, in an ideal incompressible plasma, is studied analytically and numerically. A second-order ordinary differential equation (ODE) for the RTI including quantum corrections, with a continuous density profile, in a uniform external magnetic field, is obtained. Analytic expressions of the linear growth rate of the RTI, considering modifications of density gradients, magnetic fields, and quantum effects, are presented. Numerical approaches are performed to solve the second-order ODE. The analytical model proposed here agrees with the numerical calculation. It is found that the density gradients, the magnetic fields, and the quantum effects, respectively, have a stabilizing effect on the RTI (reduce the linear growth of the RTI). The RTI can be completely quenched by the magnetic field stabilization and/or the quantum effect stabilization in proper circumstances leading to a cutoff wavelength. The quantum effect stabilization plays a central role in systems with large Atwood number and small normalized density gradient scale length. The presence of external transverse magnetic fields beside the quantum effects will bring about more stability on the RTI. The stabilization of the linear growth of the RTI, for parameters closely related to inertial confinement fusion and white dwarfs, is discussed. Results could potentially be valuable for the RTI treatment to analyze the mixing in supernovas and other RTI-driven objects.

OSTI ID:
22085917
Journal Information:
Physics of Plasmas, Vol. 19, Issue 7; Other Information: (c) 2012 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English