skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surface thermocouples for measurement of pulsed heat flux in the divertor of the Alcator C-Mod tokamak

Journal Article · · Review of Scientific Instruments
DOI:https://doi.org/10.1063/1.3689770· OSTI ID:22072258
;  [1]
  1. MIT PSFC, Cambridge, Massachusetts 02139 (United States)

A novel set of thermocouple sensors has been developed to measure heat fluxes arriving at divertor surfaces in the Alcator C-Mod tokamak, a magnetic confinement fusion experiment. These sensors operate in direct contact with the divertor plasma, which deposits heat fluxes in excess of {approx}10 MW/m{sup 2} over an {approx}1 s pulse. Thermoelectric EMF signals are produced across a non-standard bimetallic junction: a 50 {mu}m thick 74% tungsten-26% rhenium ribbon embedded in a 6.35 mm diameter molybdenum cylinder. The unique coaxial geometry of the sensor combined with its single-point electrical ground contact minimizes interference from the plasma/magnetic environment. Incident heat fluxes are inferred from surface temperature evolution via a 1D thermal heat transport model. For an incident heat flux of 10 MW/m{sup 2}, surface temperatures rise {approx}1000 deg. C/s, corresponding to a heat flux flowing along the local magnetic field of {approx}200 MW/m{sup 2}. Separate calorimeter sensors are used to independently confirm the derived heat fluxes by comparing total energies deposited during a plasma pulse. Langmuir probes in close proximity to the surface thermocouples are used to test plasma-sheath heat transmission theory and to identify potential sources of discrepancies among physical models.

OSTI ID:
22072258
Journal Information:
Review of Scientific Instruments, Vol. 83, Issue 3; Other Information: (c) 2012 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0034-6748
Country of Publication:
United States
Language:
English