skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Collective phenomena in a quasi-two-dimensional system of fermionic polar molecules: Band renormalization and excitons

Journal Article · · Physical Review. A
;  [1]
  1. Physics Department, Harvard University, Cambridge, Massachusetts 02138 (United States)

We theoretically analyze a quasi-two-dimensional system of fermionic polar molecules trapped in a harmonic transverse confining potential. The renormalized energy bands are calculated by solving the Hartree-Fock equation numerically for various trap and dipolar interaction strengths. The intersubband excitations of the system are studied in the conserving time-dependent Hartree-Fock (TDHF) approximation from the perspective of lattice modulation spectroscopy experiments. We find that the excitation spectrum consists of both intersubband particle-hole excitation continua and antibound excitons whose antibinding behavior is associated to the anisotropic nature of dipolar interactions. The excitonic modes are shown to capture the majority of the spectral weight. We evaluate the intersubband transition rates in order to investigate the nature of the excitonic modes and find that they are antibound states formed from particle-hole excitations arising from several subbands. We discuss the sum rules in the context of lattice modulation spectroscopy experiments and utilize them to check the consistency of the obtained results. Our results indicate that the excitonic effects persist for interaction strengths and temperatures accessible in the current experiments with polar molecules.

OSTI ID:
22072162
Journal Information:
Physical Review. A, Vol. 84, Issue 3; Other Information: (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1050-2947
Country of Publication:
United States
Language:
English