skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A facile method to fabricate porous Co{sub 3}O{sub 4} hierarchical microspheres

Journal Article · · Materials Characterization

Flower-like Co{sub 3}O{sub 4} hierarchical microspheres composed of self-assembled porous nanoplates have been prepared by a two-step method without employing templates. The first step involves the synthesis of flower-like Co(OH){sub 2} microspheres by a solution route at low temperatures. The second step includes the calcination of the as-prepared Co(OH){sub 2} microspheres at 200 deg. C for 1 h, causing their decomposition to form porous Co{sub 3}O{sub 4} microspheres without destruction of their original morphology. The samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffractormeter and Fourier transform infrared spectroscope. Some experimental factors including solution temperature and surfactant on the morphologies of the final products have been investigated. The magnetic properties of Co{sub 3}O{sub 4} microspheres were also investigated. - Graphical Abstract: Flower-like Co{sub 3}O{sub 4} microspheres are composed of self-assembled nanoplates and these nanoplates appear to be closely packed in the microspheres. These nanoplates consist of a large number of nanocrystallites less than 5 nm in size with a porous structure, in which the connection between nanocrystallites is random. Research Highlights: {yields} Flower-like Co{sub 3}O{sub 4} hierarchical microspheres composed of self-assembled porous nanoplates have been prepared by a two-step method without employing templates. {yields} Layered Co(OH){sub 2} microspheres were prepared with an appropriate approach under low temperatures for 1 h reaction. {yields} Calcination caused Co(OH){sub 2} decomposition to form porous Co{sub 3}O{sub 4} microspheres without destruction of their original morphology.

OSTI ID:
22066386
Journal Information:
Materials Characterization, Vol. 62, Issue 8; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1044-5803
Country of Publication:
United States
Language:
English