skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the formation of Al{sub 3}Ni{sub 2} intermetallic compound by aluminothermic reduction of nickel oxide

Journal Article · · Materials Characterization

Simultaneous reduction of NiO and formation of Al{sub 3}Ni{sub 2} intermetallic compound at 880, 940 and 1000 deg. C were investigated by means of the thermal reduction method. The optimal Ni contents for the starting samples were determined at different times and temperatures through the compositional analysis. The microstructure of the metallic quenched samples was observed by scanning electron microscope. Moreover, the X-ray diffraction analysis and energy disperse spectrometry were applied to characterize the formation of the phases. The results showed that the metallic samples consisted of Al{sub 3}Ni{sub 2}, Al{sub 3}Ni and Al phases and that there was no trace of Ni, NiO and Al{sub 2}O{sub 3}. It was found that after 10 min at the applied temperatures, the reaction completed. For the longer time, the dispersed Al{sub 3}Ni{sub 2} nuclei were grown and its continuous network formed. By increasing the temperature, the thickness of the Al{sub 3}Ni precipitation around Al{sub 3}Ni{sub 2} phase is enhanced in the samples with the same Ni content. A model was proposed for these reactions. - Research Highlights: {yields} Simultaneous reduction of NiO, and Al{sub 3}Ni{sub 2} intermetallics formation at temperatures lower than Ni melting point. {yields} Presently a mechanism for such a process. {yields} Parametric study of microstructure and formed phases.

OSTI ID:
22066377
Journal Information:
Materials Characterization, Vol. 62, Issue 7; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1044-5803
Country of Publication:
United States
Language:
English