skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact of [{sup 11}C]Methionine Positron Emission Tomography for Target Definition of Glioblastoma Multiforme in Radiation Therapy Planning

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
 [1];  [2];  [1];  [2]; ;  [3]; ;  [4]; ;  [5];  [2];  [5];  [6]
  1. Department of Radiation Oncology, Kizawa Memorial Hospital, Minokamo (Japan)
  2. Chubu Medical Center for Prolonged Traumatic Brain Dysfunction and Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine, Minokamo (Japan)
  3. Department of Radiology, Kizawa Memorial Hospital, Minokamo (Japan)
  4. Department of Neurosurgery, Gifu University School of Medicine, Gifu (Japan)
  5. Department of Radiology, Gifu University School of Medicine, Gifu (Japan)
  6. Department of Radiology, Niigata University School of Medicine, Niigata (Japan)

Purpose: The purpose of this work was to define the optimal margins for gadolinium-enhanced T{sub 1}-weighted magnetic resonance imaging (Gd-MRI) and T{sub 2}-weighted MRI (T{sub 2}-MRI) for delineating target volumes in planning radiation therapy for postoperative patients with newly diagnosed glioblastoma multiforme (GBM) by comparison to carbon-11-labeled methionine positron emission tomography ([{sup 11}C]MET-PET) findings. Methods and Materials: Computed tomography (CT), MRI, and [{sup 11}C]MET-PET were separately performed for radiation therapy planning for 32 patients newly diagnosed with GBM within 2 weeks after undergoing surgery. The extent of Gd-MRI (Gd-enhanced clinical target volume [CTV-Gd]) uptake and that of T{sub 2}-MRI of the CTV (CTV-T{sub 2}) were compared with the extent of [{sup 11}C]MET-PET (CTV--[{sup 11}C]MET-PET) uptake by using CT--MRI or CT--[{sup 11}C]MET-PET fusion imaging. We defined CTV-Gd (x mm) and CTV-T{sub 2} (x mm) as the x-mm margins (where x = 0, 2, 5, 10, and 20 mm) outside the CTV-Gd and the CTV-T{sub 2}, respectively. We evaluated the relationship between CTV-Gd (x mm) and CTV-- [{sup 11}C]MET-PET and the relationship between CTV-T{sub 2} (x mm) and CTV-- [{sup 11}C]MET-PET. Results: The sensitivity of CTV-Gd (20 mm) (86.4%) was significantly higher than that of the other CTV-Gd. The sensitivity of CTV-T{sub 2} (20 mm) (96.4%) was significantly higher than that of the other CTV-T{sub 2} (x = 0, 2, 5, 10 mm). The highest sensitivity and lowest specificity was found with CTV-T{sub 2} (x = 20 mm). Conclusions: It is necessary to use a margin of at least 2 cm for CTV-T{sub 2} for the initial target planning of radiation therapy. However, there is a limit to this setting in defining the optimal margin for Gd-MRI and T{sub 2}-MRI for the precise delineation of target volumes in radiation therapy planning for postoperative patients with GBM.

OSTI ID:
22055918
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 82, Issue 1; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English