skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti-Zr-N and Ti-Ta-N

Journal Article · · Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films
DOI:https://doi.org/10.1116/1.3426296· OSTI ID:22053722
; ; ; ; ; ;  [1]
  1. Departement Physique et Mecanique des Materiaux, Institut Pprime, UPR 3346, CNRS, Universite de Poitiers, ENSMA, SP2MI--Teleport 2, Bd Marie et Pierre Curie, BP 30179, F86962 Futuroscope-Chasseneuil (France)

Ternary transition metal nitride thin films, with thickness up to 300 nm, were deposited by dc reactive magnetron cosputtering in Ar-N{sub 2} plasma discharges at 300 deg. C on Si substrates. Two systems were comparatively studied, Ti-Zr-N and Ti-Ta-N, as representative of isostructural and nonisostructural prototypes, with the aim of characterizing their structural, mechanical, and electrical properties. While phase-separated TiN-ZrN and TiN-TaN are the bulk equilibrium states, Ti{sub 1-x}Zr{sub x}N and Ti{sub 1-y}Ta{sub y}N solid solutions with the Na-Cl (B1-type) structure could be stabilized in a large compositional range (up to x=1 and y=0.75, respectively). Substituting Ti atoms by either Zr or Ta atoms led to significant changes in film texture, microstructure, grain size, and surface morphology, as evidenced by x-ray diffraction, x-ray reflectivity, and scanning electron and atomic force microscopies. The ternary Ti{sub 1-y}Ta{sub y}N films exhibited superior mechanical properties to Ti{sub 1-x}Zr{sub x}N films as well as binary compounds, with hardness as high as 42 GPa for y=0.69. All films were metallic, the lowest electrical resistivity {rho}{approx}65 {mu}{Omega} cm being obtained for pure ZrN, while for Ti{sub 1-y}Ta{sub y}N films a minimum was observed at y{approx}0.3. The evolution of the different film properties is discussed based on microstructrural investigations.

OSTI ID:
22053722
Journal Information:
Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films, Vol. 28, Issue 4; Other Information: (c) 2010 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 1553-1813
Country of Publication:
United States
Language:
English