skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fabrication of a highly oriented line structure on an aluminum surface and the nanoscale patterning on the nanoscale structure using highly functional molecules

Journal Article · · Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films
DOI:https://doi.org/10.1116/1.3125264· OSTI ID:22051002
; ; ; ; ; ; ; ; ; ; ;  [1]
  1. Department of Electrical, Electronic and Information Engineering, College of Engineering, Kanto Gakuin University, 1-50-1 Mutsuurahigashi, Kanazawa-ku, Yokohama 236-8501 (Japan)

The surface of an Al plate was treated with a combination of chemical and electrochemical processes for fabrication of surface nanoscale structures on Al plates. Chemical treatments by using acetone and pure water under supersonic waves were conducted on an Al surface. Additional electrochemical process in H{sub 2}SO{sub 4} solution created a finer and oriented nanoscale structure on the Al surface. Dynamic force microscopy (DFM) measurement clarified that the nanoscale highly oriented line structure was successfully created on the Al surface. The line distance was estimated approximately 30-40 nm. At the next stage, molecular patterning on the highly oriented line structure by functional molecules such as copper phthalocyanine (CuPc) and fullerene C{sub 60} was also conducted. CuPc or C{sub 60} molecules were deposited on the highly oriented line structure on Al. A toluene droplet containing CuPc molecules was cast on the nanostructured Al plate and was extended on the surface. CuPc or C{sub 60} deposition on the nanostructured Al surface proceeded by evaporation of toluene. DFM and x-ray photoemission spectroscopy measurements demonstrated that a unique molecular pattern was fabricated so that the highly oriented groove channels were filled with the functional molecules.

OSTI ID:
22051002
Journal Information:
Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films, Vol. 27, Issue 4; Other Information: (c) 2009 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 1553-1813
Country of Publication:
United States
Language:
English