skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A GAS-PHASE FORMATION ROUTE TO INTERSTELLAR TRANS-METHYL FORMATE

Journal Article · · Astrophysical Journal Letters
; ; ; ;  [1]
  1. Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, CO 80309-0215 (United States)

The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowing afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 {+-} 0.39) Multiplication-Sign 10{sup -10} cm{sup 3} s{sup -1} ({+-} 1{sigma}) and an average branching fraction of 0.05 {+-} 0.04 for protonated trans-methyl formate and 0.95 {+-} 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.

OSTI ID:
22047671
Journal Information:
Astrophysical Journal Letters, Vol. 754, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 2041-8205
Country of Publication:
United States
Language:
English