skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Current-induced domain wall motion in permalloy nanowires with a rectangular cross-section

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.3658219· OSTI ID:22038761
; ; ; ; ;  [1]
  1. National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 22 Hankou Rd., Nanjing 210093 (China)

We performed micromagnetic simulations of the current-induced domain wall motion in permalloy nanowires with rectangular cross-section. In the absence of the nonadiabatic spin-transfer term, a threshold current, J{sub c} is required to drive the domain wall moving continuously. We find that J{sub c} is proportional to the maximum cross product of the demagnetization field and magnetization orientation of the domain wall and the domain wall width. With varying both the wire thickness and width, a minimum threshold current in the order of 10{sup 6} A/cm{sup 2} is obtained when the thickness is equivalent to the wire width. With the nonadiabatic spin-transfer term, the calculated domain wall velocity {nu} equals to the adiabatic spin transfer velocity u when the current is far above the Walker limit J{sub w}. Below J{sub w}, {nu}=({beta}/{alpha})u, where {beta} is the nonadiabatic parameter and {alpha} is the damping factor. For different {beta}, we find the Walker limit can be scaled as J{sub w}=({alpha}/{beta}-{alpha})J{sub c}. Our simulations agree well with the one dimensional analytical calculation, suggesting the findings are the general behaviors of the systems in this particular geometry.

OSTI ID:
22038761
Journal Information:
Journal of Applied Physics, Vol. 110, Issue 9; Other Information: (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English