skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Near-IR absorption in high-purity photothermorefractive glass and holographic optical elements: measurement and application for high-energy lasers

Journal Article · · Applied Optics
DOI:https://doi.org/10.1364/AO.50.005905· OSTI ID:22036746

Volume Bragg gratings (VBGs) in photothermorefractive (PTR) glass are widely used for laser beam control including high-power laser systems. Among them, spectral beam combining based on VBGs is one of the most promising. Achieving 100+ kW of combined laser beams requires the development of PTR glass and VBGs with an extremely low absorption coefficient and therefore methods of its measurement. This paper describes the calorimetric method that was developed for measuring a low absorption coefficient in PTR glass and VBGs. It is based on transmission monitoring of the intrinsic Fabry-Perot interferometer produced by the plane-parallel surfaces of the measured optical elements when heated by high-power laser radiation. An absorption coefficient at 1085 nm as low as 5x10{sup -5} cm{sup -1} is demonstrated in pristine PTR glass while an absorption coefficient as low as 1x10{sup -4} cm{sup -1} is measured in high-efficiency reflecting Bragg gratings with highest purity. The actual level of absorption in PTR glass allows laser beam control at the 10 kW level, while the 100 kW level would require active cooling and/or decreasing the absorption in PTR Bragg gratings to a value similar to that in virgin PTR glass.

OSTI ID:
22036746
Journal Information:
Applied Optics, Vol. 50, Issue 30; Other Information: (c) 2011 Optical Society of America; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6935
Country of Publication:
United States
Language:
English