skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom

Journal Article · · Applied Optics
DOI:https://doi.org/10.1364/AO.48.004651· OSTI ID:22036400

We report on the nonlinear reconstruction of local absorption and fluorescence contrast in tissuelike scattering media from measured time-domain diffuse reflectance and transmittance of laser as well as laser-excited fluorescence radiation. Measurements were taken at selected source-detector offsets using slablike diffusely scattering and fluorescent phantoms containing fluorescent heterogeneities. Such measurements simulate in vivo data that would be obtained employing a scanning, time-domain fluorescence mammograph, where the breast is gently compressed between two parallel glass plates, and source and detector optical fibers scan synchronously at various source-detector offsets, allowing the recording of laser and fluorescence mammograms. The diffusion equations modeling the propagation of the laser and fluorescence radiation were solved in frequency domain by the finite element method simultaneously for several modulation frequencies using Fourier transformation and preprocessed experimental data. To reconstruct the concentration of the fluorescent contrast agent, the Born approximation including higher-order reconstructed photon densities at the excitation wavelength was used. Axial resolution was determined that can be achieved by various detection schemes. We show that remission measurements increase the depth resolution significantly.

OSTI ID:
22036400
Journal Information:
Applied Optics, Vol. 48, Issue 24; Other Information: (c) 2009 Optical Society of America; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6935
Country of Publication:
United States
Language:
English