skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe{sub 4-x}Zn{sub x}Sb{sub 12}

Journal Article · · Journal of Solid State Chemistry
; ; ;  [1]
  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Hongshan district, Wuhan 430070 (China)

In this study, Zn-substituted polycrystalline skutterudites CeFe{sub 4-x}Zn{sub x}Sb{sub 12} (x=0, 0.05, 0.1, 0.2, 0.3) were successfully prepared by a traditional melting-annealing method. The solubility of Zn in Fe site is {approx}1.2%, exceeding which trace amount of ZnSb phase can be detected in the XRD. This ZnSb impurity phase, with size of several hundred nanometers for the sample with x=0.2 but showing surprisingly small size of {approx}10 nm for the sample with x=0.3, selectively distributes on the grain boundaries. In particular, the introduction of Zn in Fe site effectively improves the Seebeck coefficient in a manner of enhancement in hole effective mass, but it has negligible influence on both electrical and thermal conductivities though the hole concentration is increased. Consequently the corresponding improvement in power factor leads to an improved thermoelectric figure of merit (ZT) of 0.9 at 800 K for the sample with x=0.1, which is {approx}15% higher than that of Zn-free sample. This study demonstrates a favorable effect of Zn iso-substitution and opens a new strategy to improve the thermoelectric properties of p-type Fe-based skutterudites beyond the sole phonon engineering. - Graphical abstract: (a)-(c) ZnSb nanoinclusions emerge when Zn exceeds its solubility limit. (d), (e) The introduction of Zn boosts the Seebeck coefficient and thus enhances the ZT value. Highlights: Black-Right-Pointing-Pointer Zn is successfully employed to substitute Fe atom for the first time. Black-Right-Pointing-Pointer ZnSb nanoinclusions emerge when Zn exceeds its solubility limit {approx}0.12. Black-Right-Pointing-Pointer The introduction of Zn boosts the Seebeck coefficient and enhances the ZT value.

OSTI ID:
22012079
Journal Information:
Journal of Solid State Chemistry, Vol. . 187; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English