skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optical generation of free charge carriers in thin films of tin oxide

Journal Article · · Semiconductors
;  [1]
  1. Moscow State University (Russian Federation)

The methods of infrared absorption spectroscopy and Raman spectroscopy are used to study nanocrystalline SnO{sub x} films (1 {<=} x {<=} 2) prepared by thermal oxidation of metallic tin layers. A monotonic decrease in the transmittance of films in the infrared region has been observed as a result of exposure of the films to light with the wavelength of 380 nm at room temperature. The effect is at a maximum for the samples with x Almost-Equal-To 2 and is observed for {approx}10 min after switching off of illumination. The mentioned variations in optical properties, similarly to those observed in the case of heating of the samples in the dark, are accounted for by an increase in the concentration of free charge carriers (electrons) in nanocrystals of tin dioxide. The data of infrared spectroscopy and the Drude model are used to calculate the concentrations of photogenerated charge carriers ({approx}10{sup 19} cm{sup -3}); variations in these concentrations in the course of illumination and after switching off of illumination are determined. Mechanisms of observed photogeneration of charge carriers in SnO{sub x} films and possible applications of this effect to gas sensors are discussed.

OSTI ID:
22004866
Journal Information:
Semiconductors, Vol. 45, Issue 2; Other Information: Copyright (c) 2011 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7826
Country of Publication:
United States
Language:
English