skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TURBULENT DIFFUSION IN THE PHOTOSPHERE AS DERIVED FROM PHOTOSPHERIC BRIGHT POINT MOTION

Journal Article · · Astrophysical Journal
; ;  [1]; ; ; ;  [2];  [3]
  1. Big Bear Solar Observatory, Big Bear City, CA 92314 (United States)
  2. Dipartimento di Fisica, Universita della Calabria, I-87036 Rende (Italy)
  3. Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

On the basis of observations of solar granulation obtained with the New Solar Telescope of Big Bear Solar Observatory, we explored proper motion of bright points (BPs) in a quiet-sun area, a coronal hole, and an active region plage. We automatically detected and traced BPs and derived their mean-squared displacements as a function of time (starting from the appearance of each BP) for all available time intervals. In all three magnetic environments, we found the presence of a super-diffusion regime, which is the most pronounced inside the time interval of 10-300 s. Super-diffusion, measured via the spectral index, {gamma}, which is the slope of the mean-squared displacement spectrum, increases from the plage area ({gamma} = 1.48) to the quiet-sun area ({gamma} = 1.53) to the coronal hole ({gamma} = 1.67). We also found that the coefficient of turbulent diffusion changes in direct proportion to both temporal and spatial scales. For the minimum spatial scale (22 km) and minimum time scale (10 s), it is 22 and 19 km{sup 2} s{sup -1} for the coronal hole and the quiet-sun area, respectively, whereas for the plage area it is about 12 km{sup 2} s{sup -1} for the minimum time scale of 15 s. We applied our BP tracking code to three-dimensional MHD model data of solar convection and found the super-diffusion with {gamma} = 1.45. An expression for the turbulent diffusion coefficient as a function of scales and {gamma} is obtained.

OSTI ID:
22004445
Journal Information:
Astrophysical Journal, Vol. 743, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

TURBULENT PAIR DISPERSION OF PHOTOSPHERIC BRIGHT POINTS
Journal Article · Thu Nov 01 00:00:00 EDT 2012 · Astrophysical Journal Letters · OSTI ID:22004445

EXPLAINING INVERTED-TEMPERATURE LOOPS IN THE QUIET SOLAR CORONA WITH MAGNETOHYDRODYNAMIC WAVE-MODE CONVERSION
Journal Article · Tue Nov 01 00:00:00 EDT 2016 · Astrophysical Journal · OSTI ID:22004445

Kinematics of Magnetic Bright Features in the Solar Photosphere
Journal Article · Wed Mar 01 00:00:00 EST 2017 · Astrophysical Journal, Supplement Series · OSTI ID:22004445