skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: OBSERVATIONS OF THE NEAR- TO MID-INFRARED UNIDENTIFIED EMISSION BANDS IN THE INTERSTELLAR MEDIUM OF THE LARGE MAGELLANIC CLOUD

Journal Article · · Astrophysical Journal
; ; ;  [1];  [2];  [3]
  1. Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
  2. Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan)
  3. Institute of Astronomy, Graduate School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

We present the results of near- to mid-infrared slit spectroscopic observations (2.55-13.4 {mu}m) of the diffuse emission toward nine positions in the Large Magellanic Cloud with the infrared camera on board AKARI. The target positions are selected to cover a wide range of the intensity of the incident radiation field. The unidentified infrared bands at 3.3, 6.2, 7.7, 8.6, and 11.3 {mu}m are detected toward all the targets and ionized gas signatures; hydrogen recombination lines and ionic forbidden lines are detected toward three of them. We classify the targets into two groups: those without the ionized gas signatures (Group A) and those with the ionized signatures (Group B). Group A includes molecular clouds and photodissociation regions, whereas Group B consists of H II regions. In Group A, the band ratios of I{sub 3.3{mu}m}/I{sub 11.3{mu}m}, I{sub 6.2{mu}m}/I{sub 11.3{mu}m}, I{sub 7.7{mu}m}/I{sub 11.3{mu}m}, and I{sub 8.6{mu}m}/I{sub 11.3{mu}m} show positive correlation with the IRAS and AKARI colors, but those of Group B do not follow the correlation. We discuss the results in terms of the polycyclic aromatic hydrocarbon (PAH) model and attribute the difference to the destruction of small PAHs and an increase in the recombination due to the high electron density in Group B. In the present study, the 3.3 {mu}m band provides crucial information on the size distribution and/or the excitation conditions of PAHs and plays a key role in the distinction of Group A from B. The results suggest the possibility of the diagram of I{sub 3.3{mu}m}/I{sub 11.3{mu}m} versus I{sub 7.7{mu}m}/I{sub 11.3{mu}m} as an efficient diagnostic tool to infer the physical conditions of the interstellar medium.

OSTI ID:
22004306
Journal Information:
Astrophysical Journal, Vol. 744, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English