skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhancement of oxygen vacancies and solar photocatalytic activity of zinc oxide by incorporation of nonmetal

Journal Article · · Journal of Solid State Chemistry
 [1];  [2]
  1. Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007 (India)
  2. Center for Materials Characterization, National Chemical Laboratory, Pune 411008 (India)

B-doped ZnO and N-doped ZnO powders have been synthesized by mechanochemical method and characterized by TG-DTA, XRD, SEM-EDX, XPS, UV-visible and photoluminescence (PL) spectra. X-ray diffraction data suggests the hexagonal wurtzite structure for modified ZnO crystallites and the incorporation of nonmetal expands the lattice constants of ZnO. The room temperature PL spectra suggest more number of oxygen vacancies exist in nonmetal-doped ZnO than that of undoped zinc oxide. XPS analysis shows the substitution of some of the O atoms of ZnO by nonmetal atoms. Solar photocatalytic activity of B-doped ZnO, N-doped ZnO and undoped ZnO was compared by means of oxidative photocatalytic degradation (PCD) of Bisphenol A (BPA). B-doped ZnO showed better solar PCD efficiency as compare to N-doped ZnO and undoped ZnO. The PCD of BPA follows first order reaction kinetics. The detail mechanism of PCD of Bisphenol A was proposed with the identification of intermediates such as hydroquinone, benzene-1,2,4-triol and 4-(2-hydroxypropan-2-yl) phenol. - Graphical Abstract: B-doped ZnO and N-doped ZnO synthesized by mechanochemical method were characterized by various techniques. Solar photocatalytic degradation of Bisphenol-A is in the order of B-ZnO>N-ZnO>ZnO. Highlights: Black-Right-Pointing-Pointer B-doped ZnO and N-doped ZnO powders have been synthesized by mechanochemical method. Black-Right-Pointing-Pointer PL spectra suggest oxygen vacancies are in order of B-doped ZnO>N-doped ZnO>ZnO. Black-Right-Pointing-Pointer Solar PCD efficiency is in order of B-doped ZnO>N-doped ZnO>ZnO for Bisphenol A.

OSTI ID:
21612828
Journal Information:
Journal of Solid State Chemistry, Vol. 184, Issue 12; Other Information: DOI: 10.1016/j.jssc.2011.10.016; PII: S0022-4596(11)00557-3; Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English