skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fluid Closure, Theory, Relations to Particle Pinches, Fluid Resonances

Abstract

The fluid closure in a toroidal plasma is discussed. In particular the relation to particle and temperature pinches is considered. Implications for the radial growth of transport coefficients are given. A particularly significant effect of dissipative kinetic resonances is that they reduce particle pinches. This is shown both for a gyrofluid and a quasilinear kinetic model. In particular the fact that the ITG and Trapped electron modes are resonant modes and that the effect of dissipative kinetic resonanses is ignorable for impurities but not for main ions shows that the closure aspect in a fluid description and strongly nonlinear effects in a kinetic description are instrumental for a proper description of particle pinches. We assume here that only the ITG mode due to main ions is unstable. The ITG mode due to impurities would, of course, be sensitive to the resonance with impurities. This also addresses the question of sources in the Fokker-Planck equation. The point is that we need only to worry about resonant sources for the wave dynamics, since RF heating with phase velocity or NBI heating with beam velocity far from the drift waves will appear only as ideal heat sources. The difference in phase velocity betweenmore » drift waves and RF waves is much larger than the difference in thermal velocity of main ions and typical impurity ions.« less

Authors:
 [1];  [2]
  1. Chalmers University of Technology and EURATOM-VR Association, S-41296 Gothenburg (Sweden)
  2. Bogoliubov Institute for Theoretical Physics, 03680 Kiev (Ukraine)
Publication Date:
OSTI Identifier:
21611736
Resource Type:
Journal Article
Journal Name:
AIP Conference Proceedings
Additional Journal Information:
Journal Volume: 1392; Journal Issue: 1; Conference: IFP-CNR-Chalmers workshop on nonlinear phenomena in fusion plasmas, Varenna (Italy), 8-10 Jun 2011; Other Information: DOI: 10.1063/1.3647229; (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0094-243X
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; BEAM INJECTION HEATING; CHARGED-PARTICLE TRANSPORT; FOKKER-PLANCK EQUATION; ION TEMPERATURE; IONS; NEUTRAL ATOM BEAM INJECTION; NONLINEAR PROBLEMS; PHASE VELOCITY; PINCH EFFECT; PLASMA; PLASMA IMPURITIES; RESONANCE; TEMPERATURE GRADIENTS; TRAPPED ELECTRONS; WAVE PROPAGATION; BEAM INJECTION; CHARGED PARTICLES; DIFFERENTIAL EQUATIONS; ELECTRONS; ELEMENTARY PARTICLES; EQUATIONS; FERMIONS; HEATING; IMPURITIES; LEPTONS; PARTIAL DIFFERENTIAL EQUATIONS; PLASMA HEATING; RADIATION TRANSPORT; VELOCITY

Citation Formats

Weiland, Jan, and Zagorodny, Anatoly. Fluid Closure, Theory, Relations to Particle Pinches, Fluid Resonances. United States: N. p., 2011. Web. doi:10.1063/1.3647229.
Weiland, Jan, & Zagorodny, Anatoly. Fluid Closure, Theory, Relations to Particle Pinches, Fluid Resonances. United States. https://doi.org/10.1063/1.3647229
Weiland, Jan, and Zagorodny, Anatoly. 2011. "Fluid Closure, Theory, Relations to Particle Pinches, Fluid Resonances". United States. https://doi.org/10.1063/1.3647229.
@article{osti_21611736,
title = {Fluid Closure, Theory, Relations to Particle Pinches, Fluid Resonances},
author = {Weiland, Jan and Zagorodny, Anatoly},
abstractNote = {The fluid closure in a toroidal plasma is discussed. In particular the relation to particle and temperature pinches is considered. Implications for the radial growth of transport coefficients are given. A particularly significant effect of dissipative kinetic resonances is that they reduce particle pinches. This is shown both for a gyrofluid and a quasilinear kinetic model. In particular the fact that the ITG and Trapped electron modes are resonant modes and that the effect of dissipative kinetic resonanses is ignorable for impurities but not for main ions shows that the closure aspect in a fluid description and strongly nonlinear effects in a kinetic description are instrumental for a proper description of particle pinches. We assume here that only the ITG mode due to main ions is unstable. The ITG mode due to impurities would, of course, be sensitive to the resonance with impurities. This also addresses the question of sources in the Fokker-Planck equation. The point is that we need only to worry about resonant sources for the wave dynamics, since RF heating with phase velocity or NBI heating with beam velocity far from the drift waves will appear only as ideal heat sources. The difference in phase velocity between drift waves and RF waves is much larger than the difference in thermal velocity of main ions and typical impurity ions.},
doi = {10.1063/1.3647229},
url = {https://www.osti.gov/biblio/21611736}, journal = {AIP Conference Proceedings},
issn = {0094-243X},
number = 1,
volume = 1392,
place = {United States},
year = {Mon Oct 03 00:00:00 EDT 2011},
month = {Mon Oct 03 00:00:00 EDT 2011}
}