skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Permeability and elastic modulus of cement paste as a function of curing temperature

Journal Article · · Cement and Concrete Research

The permeability and elastic modulus of mature cement paste cured at temperatures between 8 Degree-Sign C and 60 Degree-Sign C were measured using a previously described beam bending method. The permeability increases by two orders of magnitude over this range, with most of the increase occurring when the curing temperature increases from 40 Degree-Sign C to 60 Degree-Sign C. The elastic modulus varies much less, decreasing by about 20% as the curing temperature increases from 20 Degree-Sign C to 60 Degree-Sign C. All specimens had very low permeability, k < 0.1 nm{sup 2}, despite having relatively high porosity, {phi} {approx} 40%. Concomitant investigations of the microstructure using small angle neutron scattering and thermoporometry indicate that the porosity is characterized by nanometric pores, and that the characteristic size of pores controlling transport increases with curing temperature. The variation of the microstructure with curing temperature is attributed to changes in the pore structure of the calcium-silicate-hydrate reaction product. Both the empirical Carmen-Kozeny, and modified Carmen-Kozeny permeability models suggest that the tortuosity is very high regardless of curing temperature, {xi} {approx} 1000.

OSTI ID:
21596960
Journal Information:
Cement and Concrete Research, Vol. 42, Issue 2; Other Information: DOI: 10.1016/j.cemconres.2011.11.012; PII: S0008-8846(11)00297-3; Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0008-8846
Country of Publication:
United States
Language:
English